


Struvite – a new option for improving phosphorus balances in organic agriculture



## Table of contents





### Struvite as an Alternative Fertilizer

- Mineral fertilizer = Limited resource & high environmental impact No P mines in EU (Norway ?) Phosphorus listed as critical substance EU
- Quality concerns depending on Mg reagent used (soluble versus low soluble Mg salts)
   Lower quality but consistent product.
- Struvite = excellent fertilizer properties but bad fertilizer LOW SALINITY = Droughts

MgNH<sub>4</sub>PO<sub>4</sub>.6H<sub>2</sub>O 5,7% N 12,6% P 10% Mg 0% K

 No K = but opportunity at hand in producing K-struvite = still bad NPK ratio

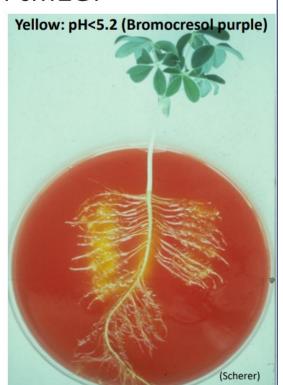
MgKPO<sub>4</sub>.6H<sub>2</sub>O 0% N 11,4% P 8,7% Mg 17,7% K

- Recent research = struvite versus mineral = at least as good or even better
  - = clear advantage (NO) emission = due to slow-release properties



## Slow-release fertiliser

Can be used as a precision fertilizer and in organic farming:




#### Struvite is a Controlled Release Fertilizer

- Roots "seek" for nutrients in soils (this is true for N, P).
- Roots concentrate around the struvite pellet.
- By acidification, the roots solubilize the struvite and take nutrients up efficiently.

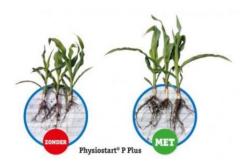
Struvite pellet after 4 months







## Struvite as an Alternative Fertilizer


 Root induced organic acid release Nitrification by soil microbiota



https://crystalgreen.com/

• Phyto-start (Timac)





Need for Market-pull product





### Struvite as a 'feed material'

Further processing of struvite can add value.



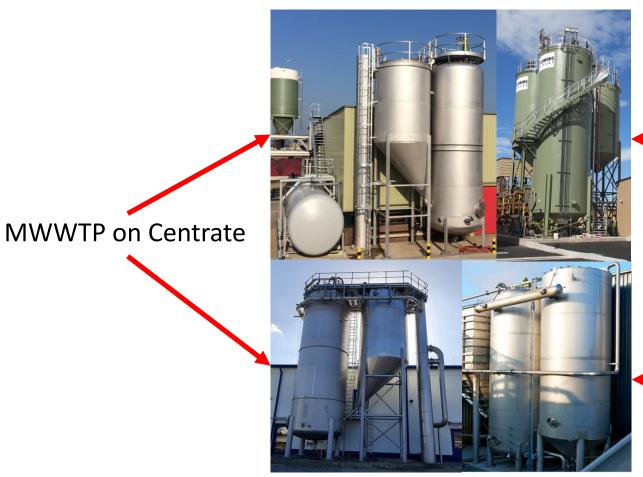
### How to turn Struvite into a Fertilizer Product

#### **Pelletizer**








Granulator







# Application diversity



MWWTP on Digestate

**IWWTP** on Centrate

















# Technology – General

#### Motivation P recovery ≠ P recovery as fertilizer

Scaling Prevention & Gritt clogging reactors



- Reducing back-flow PO4-P (up to 25% of P load)
- Stabilizing Bio-P removal in main WWTP



Depending on the specific situation at your plant and your immediate and/or future expectations, NuReSys combines its different technologies in order to Integrate Phosphate Management solutions.

# Benefit resulting from using Struvite

#### **EU Greendeal**



#### **GENERAL:**

Reduced GHG emmission @ high level NOx Decreased dependency of imported phosphates Transition to circular economy



# Regulation 2019/1009 - EU fertilizers

#### An EU fertiliser product

Struvite

Requirements of product function category (Annex I)

PFC 1(C)(I)(a)(ii): COMPOUND SOLID INORGANIC MACRONUTRIENT FERTILISER

Minimum concentrations\*

- 3 % of total nitrogen (N),
- 3 % of total phosphorus pentoxide (P2O5),
- 3 % of total potassium oxide (K2O),
- 1,5% of total magnesium oxide (MgO),
- 1,5 % by mass of total calcium oxide (CaO),
- 1,5 % by mass of total sulphur trioxide (SO<sub>3</sub>), or
- 1% of total sodium oxide (Na 2 O).

Total sodium oxide (Na 2 O) < 40 %.

The sum of all declared macronutrient contents shall be at least 18 % by mass.

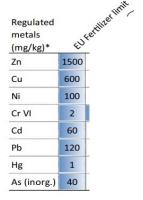
Requirements of relevant component material category (Annex II)

CMC 12: PRECIPITATED PHOSPHATE SALTS AND DERIVATES

**Struvite recovered from wastewater is allowed** (both municipal and industrial)

The precipitated phosphate salts shall contain:

- phosphorus pentoxide (P2O5) > 16 % of the dry matter content;
- Organic carbon (Corg )< 3 % of the dry matter content;
- <3 g/kg dry matter of macroscopic impurities above</li>
  2 mm (organic matter, glass, stones, metal and plastics;
- <5 g/kg dry matter of the sum of the macroscopic impurities referred.




# EU Regulation - CMC12 conti.

- The precipitation process shall take place under controlled conditions in a reactor.
- Pathogens:

| Minn annuisment he total                  | Sa | ampling pla | ns | Limit                    |  |  |  |  |  |
|-------------------------------------------|----|-------------|----|--------------------------|--|--|--|--|--|
| Micro-organisms to be tested              | n  | С           | m  | М                        |  |  |  |  |  |
| Salmonella spp.                           | 5  | 0           | 0  | Absence in 25 g or 25 ml |  |  |  |  |  |
| Escherichia coli<br>or<br>Enterococcaceae | 5  | 5           | 0  | 1 000 in 1 g or 1 ml     |  |  |  |  |  |
| Clostridium perfringens                   | 5  | 5           | 0  | 100 CFU in 1 g or 1 ml   |  |  |  |  |  |
| Ascaris sp. viable eggs                   | 5  | 0           | 0  | Absence in 25 g or 25 ml |  |  |  |  |  |

- The dry matter of precipitated phosphate salts and derivates shall be measured using vacuum drying at 40 °C until constant weight to avoid the loss of crystal-bound water.
- Heavy metal contamination:

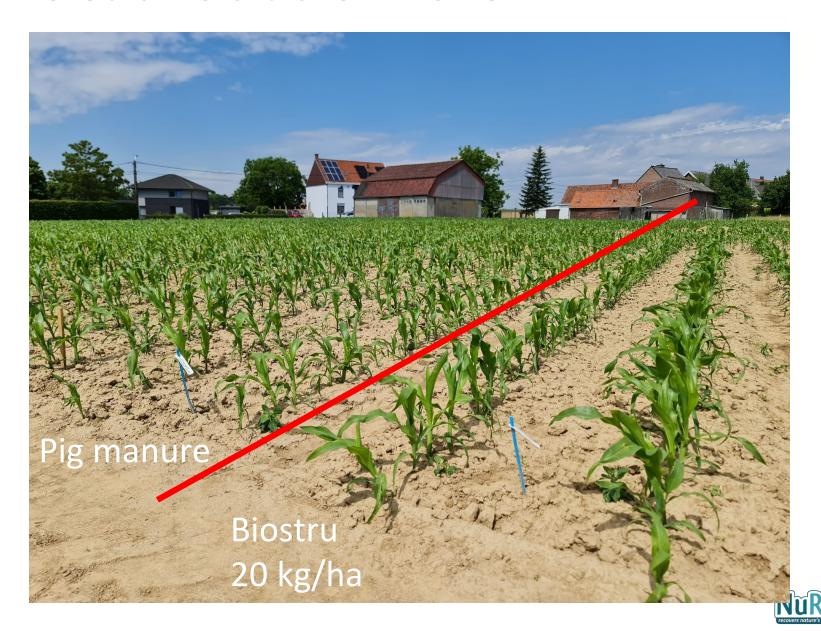




### **EU FPR-CE Mark**

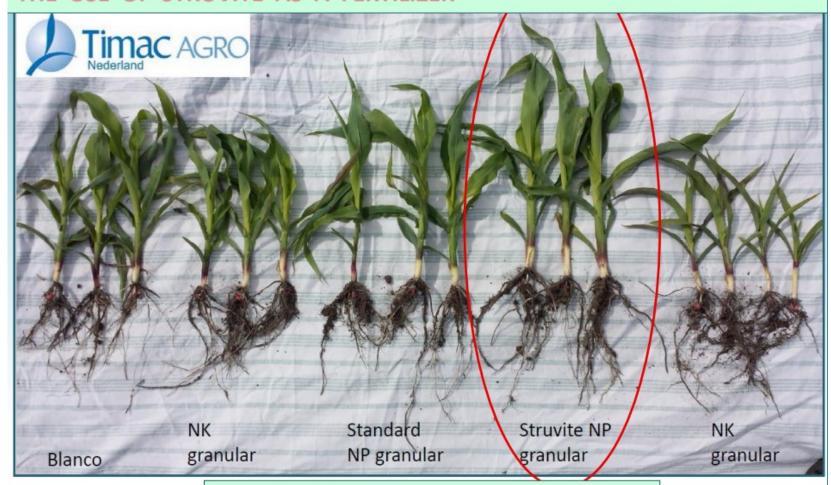
- The regulatory framework is in place EU 2019/1009 and EU 2019/1009
- Notified body can examine each production site to see if struvite meets the laid-out criteria
- EU Fertiliser product regulation CE mark can be obtained
- ✓ Allows use in organic farming




# Application of struvite as a fertilizer

- Used as a booster in the sowing stage
- Used in organic farming
- Mixed with conventional fertilisers to optimise NPK
- Mixed with organic/recovered fertilisers (FERPLAY)






## Bio-Stru field trails - Maize



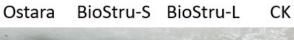
## Bio-Stru field trails - Maize

#### THE USE OF STRUVITE AS A FERTILIZER



TIMAC AGRO has turned the "slow fertilizer" STRUVITE into a STARTER FERTILIZER for maize.




## Struvite field trails – far Asia

Ostara BioStru-S BioStru-L CK



- Ostara was purchase from the dealer shop in Taiwan
- Use same gram of Ostara, BioStru-S and –L (2 different particle size) and directly mix with pak choy roots.
- CK, water + foliar fertilizer 14-15-10 1 time on 10 Mar.
- We test 2 weeks, there is no harmful to roots.







### A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability

**Table 3**Heavy metal content of the analyzed struvite samples (Empty cells: measured content < limit of detection (LOD). N.A.: Not Applicable). Color fill of the cells indicates to which extend the regulatory limit is approached or if no regulation applies.

|                                 |        | Type I: digestate |         |        |         |        |        |          |       |           | Type II: dewatering liquor of digestate |          |          |               |          |         |         |         |        |        |        | Type III: UASB effluent |          |          |        |         |                |  |
|---------------------------------|--------|-------------------|---------|--------|---------|--------|--------|----------|-------|-----------|-----------------------------------------|----------|----------|---------------|----------|---------|---------|---------|--------|--------|--------|-------------------------|----------|----------|--------|---------|----------------|--|
| Regulated<br>metals<br>(mg/kg)* | ξÚ     | fertilize         | P limit | rpet 2 | irpret? | ipret3 | TOPE A | in prets | HAY 2 | JRESYS VE | cht or                                  | 105greet | 10 Steel | 2<br>105greet | JRESYS T | JRESYS? | nohos 1 | iphos 2 | earl's | earl 2 | 2313 4 | aske N                  | iresys A | iresys 5 | 10503Q | iphos 3 | iphos a Anphos |  |
| Zn                              | 1500   | 1                 | 50      | 24     | 40      | 26     | 33     | 2        | 13    | 33        |                                         | 4.2      | 1.6      | 1.8           | 55       |         | 5.6     | 1.4     |        |        | 13     | 8.1                     | 14       | 548      | 241    | 501     | 4.8            |  |
| Cu                              | 600    | 1                 | 28      | 17     | 16      | 7.4    | 7.5    | 2        | 3.3   | 20        |                                         |          |          |               | 64       |         | 1.5     |         |        |        | 6.3    | 1.2                     | 1.4      | 70       | 73     | 92      |                |  |
| Ni                              | 100    | 1                 | 2.3     | 3.4    | 1.5     | 1.4    | 1.1    |          |       | 1.3       |                                         |          |          |               | 4        |         |         |         |        |        | 12     |                         |          | 5.5      | 6      | 5.2     |                |  |
| Cr VI                           | 2      | 1.5               |         |        |         |        |        |          |       |           |                                         |          |          |               |          |         |         |         |        |        |        |                         |          |          |        |         |                |  |
| Cd                              | 60     | 1                 |         |        |         |        |        |          |       |           |                                         |          |          |               |          |         |         |         |        |        |        |                         |          |          | 1.9    | 2       |                |  |
| Pb                              | 120    | 2                 | 19      | 2.4    | 3.4     | 3.4    |        |          |       | 3.5       |                                         |          |          |               | 9.9      |         |         |         |        |        |        |                         |          | 3.7      | 3.1    | 2.2     |                |  |
| Hg                              | 1      | 0                 |         |        | 0       |        | 0.1    |          |       | 0         |                                         |          |          |               | 0        |         |         |         |        |        | 0      |                         |          |          |        |         |                |  |
| As (inorg.)                     | 40     | 0.5               | 0.6     |        |         |        |        |          |       |           |                                         |          |          |               | 0.6      |         |         |         |        |        | 5.7    |                         |          | 1.3      | 1      | 1.2     |                |  |
| Metals not                      | regula | ited f            | or in t | he fe  | rtilize | r regu | lation | n (mg/   | /kg)  |           |                                         |          |          |               |          |         |         |         |        |        |        |                         |          |          |        |         |                |  |
| Mn                              | N.A.   | 1                 | 179     | 129    |         |        |        | 30       | 193   |           | 43                                      | 64       | 94       | 28            | 441      | 28      | 688     | 211     |        |        |        | 121                     |          | 201      |        |         | 154            |  |
| Cr                              | N.A.   | 1                 | 2.9     | 1.6    | 3.3     | 4.8    | 2      | 6.2      | 7     | 2.5       |                                         |          |          | 6.8           | 13       |         |         |         |        |        | 2.7    | 7.5                     |          | 9        | 5.4    | 5.7     |                |  |



### A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability

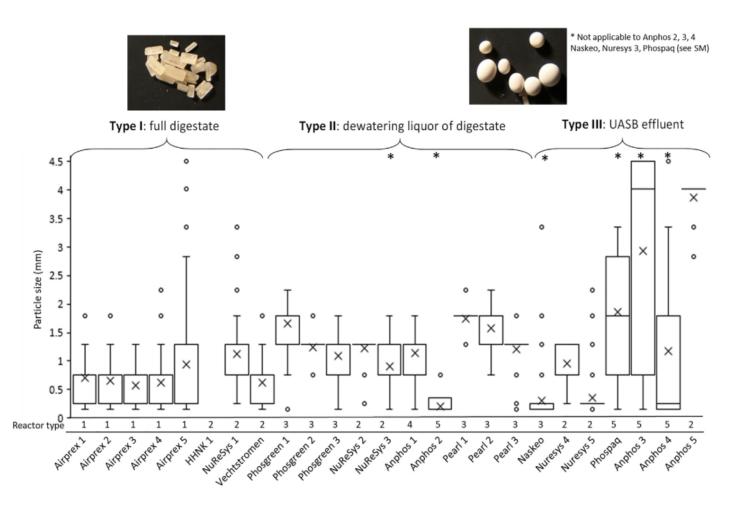



Fig. 5. Mass fraction distribution per particle size for all analyzed struvite samples. Crosses indicate the mean particle size (mm). Numbers indicate the reactor type as follows: 1 Airlift reactor, 2 Continues stirred tank reactor, 3 Fluidized bed reactor, 4 Tank aerated, 5 Tank mixed. Histograms, descriptive statistics and pictures per sample are presented in the SM Section 6, raw data shown in SM Table 4.



### A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability

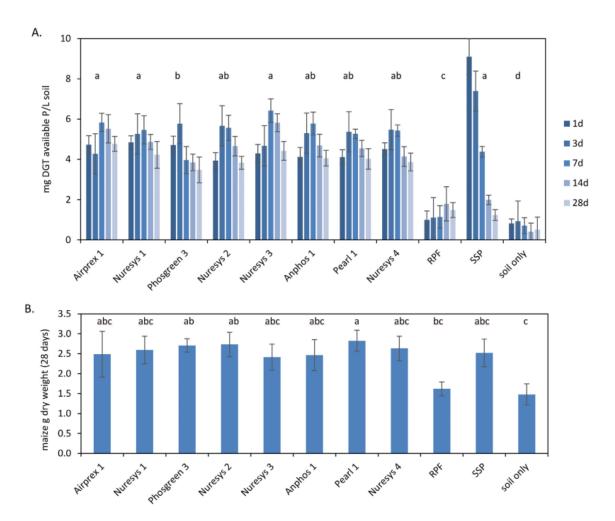



Fig. 6. A) Available P in days after germination in maize seedlings pots fertilized with struvite, rock phosphate (RP), single super phosphate (SSP) or without additional P fertilization (soil only). P collected in 24 h hours with DGT after the indicated time points are shown. P application was normalized to the P content of each sample so that in each pot the same amount of P was applied. B) Maize seedling dry weight after 28 days. Letter codes indicate significant differences between overall release patterns (i.e. different letters represent significant differences p < 0.01), for example letter combinations containing the latter 'a' are not significantly different from each other, while a combination not containing the letter 'a' is significantly different.

## Publications for net Struvite Nox emissions

- Yang, Z., Ferron, L. M., Koopmans, G. F., Sievernich, A., & van Groenigen, J. W. (2023). Nitrous oxide emissions after struvite application in relation to soil P status. *Plant and Soil*, 1-15.
- Wang, L., Ye, C., Gao, B., Wang, X., Li, Y., Ding, K., Li, H., Ren, K., Chen, S., Wang, W. and Ye, X., 2023. Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: Feasibility and mechanism. Journal of Environmental Management, 330, p.117143.
- Fukumoto, Y., Suzuki, K., Kuroda, K., Waki, M. and Yasuda, T., 2011. Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH3, N2O and NO during swine manure composting. Bioresource technology, 102(2), pp.1468-1474.
- Britton, A.T., Sacluti, F., Oldham, W.K., Mohammed, A., Mavinic, D.S. and Koch, F.A., 2007, June. Value from waste—struvite recovery at the city of Edmonton's gold bar WWTP. In Proc. IWA Specialist Conference: Moving Forward—Wastewater biosolids sustainability.



